AP Calculus BC Cram Sheet

s AP Calculus BC zkouška hned za rohem, nyní je čas, aby se vaše přípravy. Doufejme, že jste už začali studovat. A pokud ne, pak na co čekáte? Ať tak či onak, doufám, že tento kalkul BC cram list by mohl být ten správný způsob, jak si prohlédnout test.

o testu

zkouška AP Calculus BC je standardizovaný test trvající 3 hodiny a 15 minut. Pokud plánujete absolvovat test BC, musíte věnovat spoustu času studiu a přípravě.

vysoké skóre (4-5)vás může kvalifikovat pro vysokoškolský kredit nebo rovnocennost po dobu dvou úplných semestrů počtu.

formát zkoušky

  • existují dvě hlavní části, Výběr z více možností a bezplatná odpověď. Následující články vám mohou pomoci při přípravě na každý typ problému.
    • AP Calculus BC zkouška Multiple Choice Practice Problems
    • porozumění AP Calculus Free Response Questions
  • Mohu použít kalkulačku na AP Calculus Exam? No ano, ale pouze na částech každé sekce, že všechny kalkulačky. Pro sekce bez kalkulačky, podívejte se na tyto tipy sekce AP Calculus No Calculator.
  • Foto bitjungle

    Obecné Tipy

  • Pokud nemůžete přijít s správnou odpověď, pak se hádat nebude bolet vaše skóre. Ale pokuste se eliminovat odpovědi, o kterých jste si jisti, že nemohou být správné.
  • tempo se v sekci s možností výběru. Pokud zjistíte, že trávíte příliš mnoho času otázkou, přeskočte to a jděte dál.
  • použijte dvouprůchodovou metodu. Při prvním průchodu problémy odpovězte, co můžete. Pak udělejte druhý průchod, pokud to čas dovolí.
  • při druhém průchodu se ujistěte, že váš bublinový list přesně zaznamenává, co si myslíte, že jsou odpovědi. Taky, strávit nějaký čas na náročnější otázky, které jste nemohli rozlousknout napoprvé.
  • v sekci volné odpovědi věnujte dostatek času, abyste jasně napsali každý krok. Většina vašich bodů bude získána zobrazením a provedením správných metod pro každý problém. Vysvětlit, komunikovat a ospravedlnit.
  • Po zodpovězení každé otázky si znovu přečtěte prohlášení o otázce, abyste se ujistili, že jste pochopili, na co se ptají.

kliknutím sem se dozvíte více o formátu zkoušky: jaký je formát testu AP Calculus BC?.

co je na zkoušce?

existují čtyři velké myšlenky, které obsahují materiál v testu.

  1. Limity a spojitost
  2. Deriváty a Jejich využití
  3. Integrály a Jejich Aplikace
  4. Posloupnosti a Řady

zjistit, Co Témata jsou na AP Calculus BC Zkoušku?.

zkouška AP Calculus BC v podstatě pokrývá vše, co zahrnuje zkouška AB, a pak některé. Může tedy být užitečné nejprve zkontrolovat tento list AP Calculus AB Cram.

v následujícím textu zvýrazníme několik definic, vlastností, vět a vzorců, které budete potřebovat pro test, se zaměřením na ty položky, které jsou specifické pro počet BC.

AP Calculus BC Cram Sheet

nejlepší způsob, jak studovat pro každou zkoušku AP, je přezkoumat po dobu mnoha týdnů nebo měsíců. Bohužel, pravděpodobně nebudete dělat dobře, pokud váš studijní plán sestává z celonoční
cram relace v noci před testem.

káva nebude stačit, aby vás zachránila. Ujistěte se, že vaše studium je rozloženo alespoň na měsíc. Foto Dean+Barb.

takže nemyslete na tento kalkul BC cram list jako náhradu za týdny a týdny tvrdé práce. Místo toho to považujte za stručné shrnutí, které vám pomůže zkontrolovat.

velký nápad 1. Limity a kontinuita

testy AB a BC pokrývají stejná témata, pokud jde o limity a kontinuitu.

takže protože tento počet BC cram list se zaměřuje pouze na materiál BC, pojďme k dalším velkým myšlenkám.

limity a kontinuita pomáhají při analýze chování grafů. Tento graf má diskontinuity na x = -3,5, -1 a 3.

velký nápad 2. Deriváty a jejich aplikace

zde opět platí, že testy AB a BC pokrývají hodně stejné země. BC test však přesahuje AB v zahrnutí vektorových, parametrických a polárních funkcí a jejich derivátů, jakož i Eulerovy metody pro odhad řešení diferenciálních rovnic.

vektorové a parametrické funkce

v testu AP kalkulu BC jsou vektorové a parametrické funkce zásadní totéž. Oba jsou definovány jednou vstupní proměnnou (nebo parametrem) t a více výstupy, x a y.

vektorová funkce vypadá takto: F(t) = (f(t), g(t)).

parametrická funkce vypadá jako seznam dvou funkcí: x = f(t) A y = g(t). Dalším termínem je soubor parametrických rovnic.

v obou případech jsou hodnoty funkce páry (x, y) definované připojením t-hodnot na f (t) A g (t).

například, parametrické rovnice definující kružnici o poloměru 4 střed v počátku jsou x = 4cos t a y = 4sin t, pro 0 ≤ t ≤ 2π.

kružnice o poloměru 4. Parametrická funkce: x = 4cos t a y = 4sin t, pro 0 ≤ t ≤ 2π.

vektorové a parametrické funkce jsou příklady více proměnných funkcí. Podívejte se na tuto recenzi AP Calculus: Multivariables pro více informací.

měli byste vědět, jak najít první a druhou derivaci a jaké jsou jejich interpretace.

připomeňme, že rychlost částice se zjistí tím, že se vezme délka nebo velikost rychlosti.

sklon parametrické křivky je dán:

Polární Funkce,

polární funkce r = f(θ) definuje křivku podle toho, jak daleko od počátku (r) každý bod je v daném úhlu (θ).

graf r = 5cos(3θ) se nazývá tři listy růže.

Tam jsou konverzní vzorce, které vám mohou pomoci transformovat rovnici psané z hlediska x a y (Kartézské souřadnice) do polární rovnice, a naopak.

Pokud potřebujete znát sklon polární křivky r = f (θ), použijte následující vzorec polární derivace.

Eulerova metoda

Předpokládejme, že máte problém s počáteční hodnotou následujícího formuláře.

Pak, s jakékoliv zvolené malé velikosti kroku h, můžete přibližné řešení pomocí následujícího postupu algoritmu:

Velká Myšlenka 3. Integrály a jejich aplikace

na zkoušce AP Calculus BC se očekává, že znáte další techniky integrace, včetně integrace částí a dílčích zlomků. Zde je shrnutí všech antidiferenciačních technik, které budete potřebovat pro test: AP Calculus zkouška recenze: Antidiferenciace

budete také muset pochopit nesprávné integrály.

Některé aplikace integrace není obvykle nacházejí na AB zkoušky bude také zobrazovat, včetně:

  • Částice pohybující se podél vektorově-orientované nebo parametrické křivky.
  • délka Oblouku pro polární a parametrické funkce,
  • Oblasti ohraničené polární křivky
  • Logistického růstu

Částic, Pohybu,

v Případě, že vektorová funkce v(t) představuje rychlost částice, pak jeho neurčitý integrál poskytuje funkce polohy.

celková vzdálenost pokrytá částicí, jejíž vektorová funkce je (x(t), y(t)), je přesně stejná jako délka oblouku, o které budeme hovořit dále.

integrály délky oblouku

délka oblouku měří vzdálenost podél křivky mezi dvěma zadanými body.

Všimněte si, že vzorce pro délku oblouku parametrické funkce je přesně stejný jako vzorec pro vektorové funkce.

Oblasti v Polárních Souřadnicích

najít oblast ohraničená polární funkce r = f(θ) mezi dvě zadané úhly, použijte následující vzorec.

Logistický Model Růstu

logistický růstový model je definován určité diferenciální rovnice,

Zde, k a mají být konstanty. Pěkný popis logistické rovnice i informace o tom, jak s ní pracovat, najdete zde.

velký nápad 4. Sekvence a řady

V neposlední řadě zahrnuje zkouška AP Calculus BC témata o sekvencích a řadách. V tomto kalkulu BC cram list, poskytnu jen několik konceptů a vzorců, o kterých byste měli vědět.

koncepty sekvencí a řad

  • sekvence je pouze seznam čísel (a1, a2,a3,…).
  • řada je součet posloupnosti, která obvykle zahrnuje nekonečně mnoho termínů.
  • n-tý částečný součet řady je součtem prvních n podmínek:
  • řada konverguje tehdy a jen tehdy, když posloupnost jejích částečných součtů konverguje.
  • existuje mnoho různých testů pro konvergenci řad. Většina těchto testů pracuje pouze na konkrétních druzích sérií.
    • p-série test (konvergentní, pokud p > 1)
    • Geometrická řada test (konvergentní, pokud |r| < 1)
    • Srovnávací test a limit srovnání
    • Integrální test
    • Root a poměr testy
    • Střídavý série test
  • součet geometrické posloupnosti vzorce:

  • Taylor a Maclaurin Řady

    funkce může být reprezentována Taylorovy řady se středem x = c.

    Maclaurin série je prostě Taylorovy řady se středem x = 0.

    je velmi užitečné zapamatovat si řadu Maclaurinů pro některé běžné funkce.

mocninné Řady a Konvergence

Taylor a Maclaurin řady jsou příklady mocninné řady.

ujistěte se, že víte, jak najít poloměr a interval konvergence pro danou výkonovou řadu. Nejjednodušší metodou je často test kořene nebo poměru.

Lagrangeova chybová vazba je užitečná pro kvantifikaci toho, jak přesně Taylorův polynom aproximuje funkci. Podívejte se na toto video pro více informací.

Maclaurin série sin x aproximuje funkci lepší a lepší, jak více termínů jsou zahrnuty.

závěr

Mějte na paměti, tento Kalkul BC nacpat list by měl sloužit pouze jako přehled kontrolní seznam pro vás, ne jako primární studium zdrojů.

Pokud čtete tento s dostatkem času nazbyt před zkouškou, pak zvažte zřízení 3-měsíční AP kalkul zkouška studijní průvodce. Nebo, pokud jste odkládali věci, možná je tento 1měsíční studijní průvodce AP Calculus více ve vaší uličce.

Toto je Steve. Steve je šnek. Steve je připraven na zkoušku AP Calculus BC, protože studoval několik měsíců. Buď jako Steve!

Zlepšete své skóre SAT nebo ACT, zaručeno. Začněte 1 týdenní bezplatnou zkušební verzi Magoosh SAT Prep nebo 1 týdenní bezplatnou zkušební verzi Magoosh ACT Prep ještě dnes!



Napsat komentář

Vaše e-mailová adresa nebude zveřejněna.