Diferenciální počet I – Deriváty Hyperbolické Funkce

Zobrazit Mobilní Oznámení, Zobrazit Všechny Poznámky, Skrýt Všechny Poznámky,

Mobilní Oznámení
se zdají být na zařízení s „úzkou“ šířka obrazovky (tj. pravděpodobně jste na mobilním telefonu). Vzhledem k povaze matematiky na tomto webu je nejlepší výhled v režimu na šířku. Pokud vaše zařízení není v režimu na šířku, mnoho rovnic poběží ze strany vašeho zařízení (mělo by být možné je posouvat) a některé položky nabídky budou odříznuty kvůli úzké šířce obrazovky.

oddíl 3-8 : Derivace hyperbolických funkcí

poslední sada funkcí, na které se budeme v této kapitole dívat, jsou hyperbolické funkce. V mnoha fyzikálních situacích vznikají kombinace \({{\bf{e}}^x}\) a \({{\bf{e}}^ {- x}}\) poměrně často. Z tohoto důvodu jsou tyto kombinace pojmenovány. Existuje šest hyperbolických funkcí a jsou definovány následovně.

\

zde jsou grafy tří hlavních hyperbolických funkcí.

graf \(y= \ cosh \ left (x \right)\). Vypadá to nejasně jako vzhůru Otevírací parabola s vrcholem na (0,1).graf \(y= \ sinh \ left (x \right)\). To vypadá nejasně jako vzhůru jako graf \(y=x^{3}\) začíná ve třetím kvadrantu, a zvýšení skrze původu (kde se to srovná krátce), pak se i nadále zvyšovat v prvním kvadrantu.
graf \(y= \ tanh \ left (x \right)\). Graf začíná vlevo u vodorovné asymptoty na \(y=-1\) a zvětšuje se procházející (0,0) a poté se blíží další horizontální asymptotě na \(y=1\).

máme také následující fakta o hyperbolických funkcích.

\

všimněte si, že jsou podobné, ale ne úplně stejné, jako některé z běžnějších identit trig, takže buďte opatrní, abyste zde nezaměňovali identity se standardními funkcemi trig.

protože hyperbolické funkce jsou definovány z hlediska exponenciálních funkcí nalezení jejich derivátů je poměrně jednoduché, pokud jste si již přečetli další část. Neměli jsme však, takže budeme potřebovat následující vzorec, který lze snadno prokázat poté, co jsme pokryli další část.

\

s tímto vzorcem uděláme derivaci pro hyperbolický sinus a zbytek necháme na vás jako cvičení.

\

pro zbytek můžeme použít definici hyperbolické funkce a / nebo kvocientní pravidlo. Zde je všech šest derivátů.

\

zde je několik rychlých derivátů využívajících hyperbolické funkce.

Příklad 1 rozlišuje každou z následujících funkcí.

  1. \(f\left( x \right) = 2{x^5}\cosh x\)
  2. \(\displaystyle h\left( t \right) = \frac{{\sinh t}}{{t + 1}}\)
Řešení

\

b

\



Napsat komentář

Vaše e-mailová adresa nebude zveřejněna.